
Application Note

AN502.doc www.intersema.ch 1/12

AN502
Software library for

MS5534 and MS5535

1 Introduction
Interfacing the MS5534 and MS5535 with a computer or a microcontroller is very easy thanks to the serial digital
interface that is provided by the pressure module. Both components rely on the Sensor Interface ASIC for
communication and data conversion.
This document provides C/C++ source code examples that access the MS5534 and the MS5535, thus reducing
Time-To-Market and reducing development risks for our customers.

Warning: The source code provided in this document and in the additional source files is given for information to
customers to help them developing their application. The reference documents are always the controlled datasheets
of the products, and customers should refer to these documents instead of the source code for the specifications.

1.1 Support of C and C++
The functions described in this document have been developed in C++. However, in order to be able to use this code
in C applications, we provide you with a C-compatible source code. People willing to work in C++ can very quickly
transform it into the appropriate classes.

2 Communication with the Sensor Interface ASIC
The MS5534 and MS5535 are both based on the Sensor Interface ASIC which handles A-to-D conversion as well as
the serial communication. Thus low-level functions are product independent (see figure 1). Future products based on
the same IC might re-use the same library.
Sensor specific functions decode the sensor's coefficients (Cx) from the calibration words (Wx) and calculate the
compensated pressure and temperature. The ASIC access functions rely on a few hardware and time related
functions and are thus platform dependent.

Hardware
access

Time related
functions

ASIC
access

MS5534 specific
functions

MS5535 specific
functions

Figure 1. Software hierarchy

Software library for MS5534 and MS5535

AN502.doc www.intersema.ch 2/12

2.1 Hardware related functions
The MS5534 and MS5535 modules have the following pins:

• VDD
• GND
• PEN
• PV
• MCLK
• SCLK
• DIN
• DOUT

During normal operation, the software controls only SCLK, DIN and DOUT while MCLK is connected to a 32kHz
oscillator. The other pins have static voltage as described in the datasheet.
The interface with the IC is a simple 3-wire interface handling both coefficients and acquisition reading. Output signals
are SCLK and DIN, while the input signal is DOUT. To control and read these signals, the software described in this
application note uses the following functions:

long sensor_controlInit (); // 0 = no error
void sensor_controlExit (void);

void setSCLK (bool state); // set SCLK to the specified state (true/false)
bool getSCLK (void); // returns the current state of SCLK

void setDIN (bool state); // set DIN to the specified state (true/false)
bool getDIN (void); // returns the current state of DIN

bool getDOUT (void); // returns the current state of DOUT

sensor_controlInit() and sensor_controlExit() functions are used to initialize and exit the hardware control if
necessary.

The implementation of these functions is platform dependent. An example for the parallel port, working on Win32 (i.e.
Windows 95/98,...NT/2000/) is given in appendix A.

2.2 Time related functions
Communication using serial interface must meet several time constraints. In particular serial data shift must not be
too fast. Therefore, we use the WaitOnePulse function to put sufficient time between the two SCLK edges. Please
refer to the module's datasheet for the exact value. Typically this function is implemented using a busy loop
(especially on microcontroller).

void WaitOnePulse (void); // Wait for a "pulse" duration

Note that one function of this library also uses the C run-time time() function. For more details, please refer to the
description of the waitOnDoutFall() below.

2.3 Sensor Interface ASIC access functions

The sensor interface related functions give access to the module through the serial interface. They provide access to
the ADC through reading D1 and D2, and also to the coefficient memory. The function prototypes are given hereafter.

void reset (void); // send a reset sequence to the IC
long getW (long index); // Read the corresponding calibration word of the IC (index [1:4])
long getD1 (long *error_pt); // Start a D1 acquisition, wait for end of conversion and
 // return the value
long getD2 (long *error_pt); // Start a D2 acquisition, wait for end of conversion and
 // return the value

Software library for MS5534 and MS5535

AN502.doc www.intersema.ch 3/12

These functions rely on a few sub-functions described below:

long waitOnDoutFall (void); // wait until a falling edge on DOUT is detected
long SerialGet16 (void); // shift in (from IC to PC) a 16 bit value
void SerialSendLsbFirst (char pattern, char nbr_clock); // shift out (from PC to IC) a
 // sequence of bits

2.3.1 waitOnDoutFall
This function make a busy loop polling on the DOUT pin. It waits until DOUT goes low. If no module is connected, the
DOUT pin might remain at 1 forever. Thus in some application, it is necessary to implement a timeout that would stop
the loop after a certain time. This is especially useful in some Microsoft Windows application. In embedded
applications, this timeout is usually removed.
To implement the timeout function, we're using the C run-time time() function. The loop's duration is checked from
time to time. If DOUT is not low within 1 seconds, the loop is aborted.

/* === */
/* waitOnDoutFall */
/* === */
long waitOnDoutFall(void)
{
 bool working;
 long cnt;
 unsigned long t0;
 unsigned long t1;
 long error;

 working = true;
 error = 0;

 WaitOnePulse();

 t0 = (unsigned long) time(0);
 cnt = 0;

 while(working)
 {
 working = getDOUT();
 cnt++;
 WaitOnePulse();
 if (cnt>=100)
 {
 t1 = (unsigned long) time(0);
 if ((t1-t0)>1)
 {
 working = false;
 error = 1;
 }
 cnt = 0;
 }
 };

 return(error);
}

Software library for MS5534 and MS5535

AN502.doc www.intersema.ch 4/12

2.3.2 SerialGet16
This function shifts in a 16-bit value of the Sensor Interface IC. Note that we read DOUT after the allowing rising
edge of SCLK to be sure that the IC has had enough time to set the data on the DOUT pin. This function is used
mainly to fetch the Wx, D1 and D2 words out of the IC.

/* === */
/* SerialGet16 */
/* === */
long SerialGet16(void)
{
 char i;
 long v;

 v = 0;
 setSCLK(false);
 WaitOnePulse();

 for (i=0; i<16; i++)
 {
 setSCLK(true);
 WaitOnePulse();
 setSCLK(false);
 v = v << 1;
 if (getDOUT())
 v = v | 1;
 WaitOnePulse();
 }
 return(v);
}

2.3.3 SerialSendLsbFirst
This function generates a serial pattern on DIN. It generated nbr_clock cycles and the value of DIN is set according
to the pattern. The first data transmitted is the bit 0 of pattern, the second data is bit 1 (thus LSB first). This function is
used mainly to send the commands to the IC.

/* === */
/* SerialSendLsbFirst */
/* === */
void SerialSendLsbFirst(char pattern, char nbr_clock)
{
 char i;
 char c;

 setSCLK(false);
 WaitOnePulse();
 for (i=0; i<nbr_clock; i++)
 {
 c = (char) (pattern & 1);
 if (c==1)
 setDIN(true);
 else
 setDIN(false);
 WaitOnePulse();
 setSCLK(true);
 WaitOnePulse();
 setSCLK(false);
 pattern = (char) (pattern >> 1);
 }
}

Software library for MS5534 and MS5535

AN502.doc www.intersema.ch 5/12

2.3.4 reset
This function sends a reset sequence to the Sensor Interface IC.

/* === */
/* reset */
/* === */
void reset(void)
{
 SerialSendLsbFirst(0x55, 8);
 SerialSendLsbFirst(0x55, 8);
 SerialSendLsbFirst(0x00, 5);
}

2.3.5 getW
This function read the W coefficients stored in the Sensor Interface IC. The index value for W1 is 1, 2 for W2 and so
on. Note that we generate a single pulse on SCLK AFTER reading the data to be compliant with the datasheet. This
pulse is often forgotten.

/* === */
/* getW */
/* === */
long getW (long index) // 1 to 4
{
 long data;

 data = 0;
 switch(index)
 {
 case 1:
 SerialSendLsbFirst(0x57, 8);
 SerialSendLsbFirst(0x01, 5);
 data = SerialGet16();
 break;

 case 2:
 SerialSendLsbFirst(0xD7, 8);
 SerialSendLsbFirst(0x00, 5);
 data = SerialGet16();
 break;

 case 3:
 SerialSendLsbFirst(0x37, 8);
 SerialSendLsbFirst(0x01, 5);
 data = SerialGet16();
 break;

 case 4:
 SerialSendLsbFirst(0xB7, 8);
 SerialSendLsbFirst(0x00, 5);
 data = SerialGet16();
 break;
 }
 SerialSendLsbFirst(0x00, 1); // to be compliant with the data sheet
 return(data);
}

Software library for MS5534 and MS5535

AN502.doc www.intersema.ch 6/12

2.3.6 getD1
This function starts a D1 acquisition, waits for the end of conversion and reads the result out of the IC.

/* === */
/* getD1 */
/* === */
long getD1 (long *error_pt)
{
 long d1;
 long error;

 SerialSendLsbFirst(0x2F, 8);
 SerialSendLsbFirst(0x00, 2);
 error = 0;
 if (getDOUT()==false)
 error = 1; // line should be at 1 now
 SerialSendLsbFirst(0x00, 2);

 if (!error)
 error = waitOnDoutFall();

 if (!error)
 d1 = SerialGet16();
 else
 d1 = 0;

 SerialSendLsbFirst(0x00, 1); // to be compliant with the data sheet
 if (error_pt!=0)
 *error_pt = error;
 return(d1);
}

2.3.7 getD2
This function starts a D2 acquisition, waits for the end of conversion and reads the result out of the IC.

/* === */
/* getD2 */
/* === */
long getD2 (long *error_pt)
{
 long d2;
 long error;

 SerialSendLsbFirst(0x4F, 8);
 SerialSendLsbFirst(0x00, 3); // Note the difference with getD1
 error = 0;
 if (getDOUT()==false)
 error = 1; // line should be at 1 now
 SerialSendLsbFirst(0x00, 1);

 if (!error)
 error = waitOnDoutFall();

 if (!error)
 d2 = SerialGet16();
 else
 d2 = 0;
 if (error_pt!=0)
 *error_pt = error;
 return(d2);
}

Software library for MS5534 and MS5535

AN502.doc www.intersema.ch 7/12

3 MS5535 specific functions
The functions described here are specific for the MS5535. They either process the data read from the sensor
interface IC or send commands to it.

long ConvertWtoC5535 (int ix, long W1, long W2, long W3, long W4);
void calcPT5535 (double *pressure, double *temperature, long d1_arg, long d2_arg);

3.1 Coefficient conversion

3.1.1 ConvertWtoC
This functions converts the W1-W4 to one of the C coefficients. The index ix must be in range 1 to 6

/* -- */
/* --------------------------- ConvertWtoC5535 ---------------------------- */
/* -- */
long ConvertWtoC5535 (int ix, long W1, long W2, long W3, long W4)
{
 long c;
 long x, y;

 c = 0;
 switch(ix)
 {
 case 1:
 c = (W1 >> 3) & 0x1FFF;
 break;
 case 2:
 x = (W1 <<10) & 0x1C00;
 y = (W2 >> 6) & 0x03FF;
 c = x | y;
 break;
 case 3:
 c = (W3 >> 6) & 0x03FF;
 break;
 case 4:
 c = (W4 >> 7) & 0x01FF;
 break;
 case 5:
 x = (W2 << 6)& 0x0FC0;
 y = W3 & 0x003F;
 c = x | y;
 break;
 case 6:
 c = W4 & 0x007F;
 break;
 }
 return(c);
}

Software library for MS5534 and MS5535

AN502.doc www.intersema.ch 8/12

3.2 Pressure and Temperature calculation
The following function makes the conversion from D1/D2 to pressure and temperature. This function doesn't calculate
the temperature using the second order algorithm.
The fc[] variables are double values of the C coefficients of the sensor. As explained in the introduction, the functions
described here have been developed for C++ where fc[] are members of a Sensor5535 class. Please refer to the
source code given in appendix A for a real example on how to use this code.

/* -- */
/* --------------------------- calcPT5535 --------------------------------- */
/* -- */
void calcPT5535 (double *pressure, double *temperature, long d1_arg, long d2_arg)
{
 double dt, off, sens;
 double fd1, fd2, x;

 d1_arg = d1_arg & 0xFFFF;
 d2_arg = d2_arg & 0xFFFF;

 fd1 = (double) d1_arg;
 fd2 = (double) d2_arg;

 dt = -10000.0 + fd2 - (8.0 * fc[5]);
 off = 10000.0 + fc[2] + (((fc[4]-250.0) * dt) / 4096.0);
 sens = 3000.0 + (fc[1] / 2.0) + (((fc[3]+200.0) * dt) / 8192.0);
 if (pressure!=0)
 *pressure = 1000.0 + ((sens * (fd1- off)) / 4096.0);
 if (temperature!=0)
 *temperature = (200 + ((dt * (fc[6]+100.0)) / 2048.0)) / 10.0;
}

Software library for MS5534 and MS5535

AN502.doc www.intersema.ch 9/12

4 MS5534 specific functions
The functions described here are specific for the MS5534. They either process the data read from the sensor
interface IC or send commands to it.

long ConvertWtoC5534 (int ix, long W1, long W2, long W3, long W4);
void calcPT5534 (double *pressure, double *temperature, long d1_arg, long d2_arg);

4.1 Coefficients conversion

4.1.1 ConvertWtoC
This functions converts the W1-W4 to one of the C coefficients. The index ix must be in range 1 to 6

/* -- */
/* --------------------------- ConvertWtoC5534 ---------------------------- */
/* -- */
long ConvertWtoC5534 (int ix, long W1, long W2, long W3, long W4)
{
 long c;
 long x, y;

 c = 0;
 switch(ix)
 {
 case 1:
 c = (W1 >> 1) & 0x7FFF;
 break;
 case 2:
 x = (W3 << 6) & 0x0FC0;
 y = W4 & 0x003F;
 c = x | y;
 break;
 case 3:
 c = (W4 >> 6) & 0x03FF;
 break;
 case 4:
 c = (W3 >> 6) & 0x03FF;
 break;
 case 5:
 x = (W1 << 10)& 0x0400;
 y = (W2 >> 6)& 0x03FF;
 c = x | y;
 break;
 case 6:
 c = W2 & 0x003F;
 break;
 }
 return(c);
}

Software library for MS5534 and MS5535

AN502.doc www.intersema.ch 10/12

4.2 Pressure and Temperature calculation
The following function makes the conversion from D1/D2 to pressure and temperature. This function doesn't calculate
the temperature using the second order algorithm.
The fc[] variables are double values of the C coefficients of the sensor. As explained in the introduction, the functions
described here have been developed for C++ where fc[] are members of a Sensor5534 class. Please refer to the
source code given in appendix A for a real example on how to use this code.

/* -- */
/* --------------------------- calcPT5534 --------------------------------- */
/* -- */
void calcPT5534 (double *pressure, double *temperature, long d1_arg, long d2_arg)
{
 double dt, off, sens;
 double fd1, fd2, x;

 d1_arg = d1_arg & 0xFFFF;
 d2_arg = d2_arg & 0xFFFF;

 fd1 = (double) d1_arg;
 fd2 = (double) d2_arg;

 dt = fd2 - ((8.0 * fc[5]) + 20224.0);
 off = fc[2] * 4.0 + (((fc[4]-512.0) * dt) / 4096.0);
 sens = 24576.0 + fc[1] + ((fc[3] * dt) / 1024.0);
 x = ((sens * (fd1- 7168.0)) / 16384.0) -off;
 if (pressure!=0)
 *pressure = 250.0 + x / 32;
 if (temperature!=0)
 *temperature = 20.0 + ((dt * (fc[6]+50.0)) / 10240.0);
}

Software library for MS5534 and MS5535

AN502.doc www.intersema.ch 11/12

Appendix A : Implementation for the parallel port
The source code described in this application note can be downloaded with the file AN502_01_src.zip. This file
can be found on Intersema's web site (http://www.intersema.ch)

A.2 Requirement

The ZIP file contains a project for Borland C++ Builder 5.0 and for Microsoft Visual C++ 6.0. They work with the
parallel port module manufactured and distributed by Intersema. Anyway this program will also work with other
modules as long as they use the same pin-out:

pin 2 SCLK
pin 3 DIN
pin 4 VDD
pin 12 DOUT
pin 25 GND

Note: The pin 4 is used for the power supply of the parallel port module. This signal is set to 1 when the
sensor_controlInit() function is called and is set back 0 at the end of the program.

Warning: Don't forget that the parallel port is working at 5V and the MS5534 and MS5535 cannot work above
3.6V; levelshifter are therefore necessary.

A.1 Accessing the parallel port

Accessing directly the parallel port under Windows NT or 2000 is not possible since the operating system
prevents applications to modify IO registers. In order to bypass this limitation, it is possible to use a device
driver that will manage all access to the parallel port. The source code provided in this application note uses
the NTPORT software developed by Zeal SoftStudio (http://www.zealsoftstudio.com/ntport). This piece of code
allows any application to access the IO registers without restriction. A copy of the NTPORT evaluation software
is included in the archive file. It is possible to purchase an unlimited version of NTPORT directly by Zeal
SoftStudio.

To install the evaluation version of NTPORT on your computer, run setup.exe located in the ntport_setup
directory.

A.3 Files provided in the archive
bcbport.lib NTPORT library for Borland Builder
borlanddemo.bpf Borland Builder project file
borlanddemo.bpr Borland Builder project file
borlanddemo.exe Executable generated by Borland Builder
hardware.cpp hardware related functions (interface with NTPORT)
harware.h hardware related functions
interface_ic.cpp sensor interface ASIC functions
interface_ic.h sensor interface ASIC functions
main.cpp main
ms5534.cpp MS5534 functions
ms5534.h MS5534 functions
ms5535.cpp MS5535 functions
ms5535.h MS5535 functions
ntport.h NTPORT interface functions
ntport.lib NTPORT library for VC++
vcdemo.dsp VC++ project file
vcdemo.dsw VC++ project file
ntport_setup directory containing NTPORT setup files

Software library for MS5534 and MS5535

AN502.doc www.intersema.ch 12/12

REVISION HISTORY

Date Revision Type of changes
February 24, 2003 V1.1 2nd release

FACTORY CONTACTS

Intersema Sensoric SA
Ch. Chapons-des-Prés 11
CH-2022 BEVAIX

SWITZERLAND

Tel. (032) 847 9550
Tel. Int. +41 32 847 9550
Telefax +41 32 847 9569
e-mail:
http://www.intersema.ch

NOTICE
Intersema reserves the right to make changes to the products contained in this document in order to improve the design or performance
and to supply the best possible products. Intersema assumes no responsibility for the use of any circuits shown in this document, conveys
no license under any patent or other rights unless otherwise specified in this document, and makes no claim that the circuits are free from
patent infringement. Applications for any devices shown in this document are for illustration only and Intersema makes no claim or
warranty that such applications will be suitable for the use specified without further testing or modification.

