The LFV300 universal limit switch for liquids - rugged and reliable measurement of liquids using the tuning fork principle

to the universal measurement principle of the LFV300 and its flexible design. A tube-extended variant for vertical mounting with up to 6 metres switching distance to the top of the container is also available - the LFV330. A wide selection of flange, threads and hygienic connections allow customer-specific soIutions. The device is suitable for hygienic applications and can be cleaned using SIP and CIP processes. There are also variants for use in potentially explosive atmospheres, to prevent overfilling (in compliance with WHG), and with marine certification.

Advantages:

- Rugged device design
- Flexible concept allows customerspecific solutions, particularly in hygienic areas and Ex-zones
- Teaching without filling
- Very high reproducibility

Fault monitoring

The electronics module of LFV300 monitors continuously
the following criteria:
\square Strong corrosion or damage on the tuning fork

- Loss of vibration
- Line break to the piezo drive

Type overview

	LFV310	

Housing types

1

2

3

1 Plastic housing
2 Aluminium housing
3 Stainless steel

Dimensions

LFV310

1 Thread
2 Tri-Clamp
3 Cone DN 25
4 Bolting DN 40
5 Flange

LFV330

1 Thread
2 Tri-Clamp
3 Cone DN 25
4 Bolting DN 40
5 Flange
L Sensor length, see chapter „Technical data"

Temperature adapter - LFV310/330

Electrical Connection

1. Preparing the connection

Note safety instructions

Always keep in mind the following safety instructions:
\square Connect only in the complete absence of line voltage
Take note of safety instructions for Ex applications

In hazardous areas you should take note of the appropriate regulations, conformity and type approval certificates of the sensors and power supply units.

In hazardous areas, only use approved cable connections for LVF310/330.

Select connection cable for Ex applications
Take note of the corresponding installation regulations for Ex applications.

2. Wiring plan

Relay output

We recommend connecting LFV300 in such a way that the switching circuit is open when there is a level signal, line break or failure (safe condition).

The relays are always shown in non-operative condition.
LFV300 - oscillator with relay output

1 Control lamp
2 DIL switch for mode adjustment
3 DIL switch for sensitivity adjustment
LFV300 - wiring plan - relay output

1 Relay output
2 Relay output
3 Voltage supply

Transistor output

We recommend connecting LFV300 in such a way that the switching circuit is open when there is a level signal, line break or failure (safe condition).

The instrument is used to control relays, contactors, magnet valves, warning lights, horns as well as PLC inputs.

LFV300 - oscillator with transistor output

1 Control lamp
2 DIL switch for mode adjustment
3 DIL switch for sensitivity adjustment
LFV300 transistor output - NPN action

LFV300 transistor output - PNP action

Contactless electronic switch

We recommend connecting LFV300 in such a way that the switching circuit is open when there is a level signal, line break or failure (safe condition).

The contactless electronic switch is always shown in nonoperative condition.

The instrument is used for direct control of relays, contactors, magnet valves, warning lights, horns etc. It must not be operated without an intermediately connected load, because the electronics would be destroyed if connected directly to the mains. It is not suitable for connection to low voltage PLC inputs.
Domestic current is temporarily lowered below 1 mA after switching off the load so that contactors, whose holding current is lower than the constant domestic current of the electronics, are reliably switched off.

When LFV300 is used as part of an overfill protection system according to WHG, also note the regulations of the general type approval.

LFV300 - oscillator with contactless electronic switch

[^0]LFV300 - wiring plan - output, contactless electronic switch

NAMUR output

LFV300 - oscillator with NAMUR electronics

1 Control lamp
2 DIL switch for characteristics reversal
3 DIL switch for sensitivity adjustment
4 Simulation key
For connection of the amplifier according to NAMUR
(IEC 60947-5-6, EN 50227).

LFV300 - Wiring plan - NAMUR output

Simulation key

The simulation key is located in a recess on the upper side of the oscillator. Push the simulation key with a suitable object (screwdriver, pen, etc.).
When the key is pushed, a line break between sensor and processing unit is simulated. The signal lamp on the sensor extinguishes. The measuring system must signal a fault and take on a safe condition when the key is pushed.
Keep in mind that downstream connected instruments will be activated during operation. This allows you to check the correct function of the measuring system.

Characteristics reversal

The characteristics of the NAMUR electronics can be reversed with the DIL switch. You can choose between falling characteristic curve (switch position max.) and rising characteristic curve (switch position min.). You can thus have the desired current outputted. Modes:
\square min. - rising characteristic curve (High current when immersed)
\square max. - falling characteristics (Low current when immersed)
The NAMUR-output can be switched to falling or rising characteristics.
For applications according to WHG, the DIL switch must be set to position max..

LFV300

Technical data

Approvals

Overfill protection according to WHG

ATEX	ATEX II 1G, 1/2G, 2G EEx ia IIC T6
	ATEX II 1/2G, 2G EEx ia IIC T6
Marine certification	GL

Marine certification GL

Type code

Type code

Mounting instructions

Switching point

In general, LFV300 can be installed in any position. The instrument simply has be mounted in such a way that the vibrating element is at the height of the desired switching point.

The tuning fork has lateral markings (notches) marking the switching point with vertical installation. The switching point refers to the medium water with basic setting of the density switch $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}\left(0.025 \mathrm{lbs} / \mathrm{in}^{3}\right)$.

Keep in mind that foams with a density $>0.45 \mathrm{~g} / \mathrm{cm}^{3}(0.016$ $\mathrm{lbs} / \mathrm{in}^{3}$) are detected by the sensor.

Socket

The vibrating element should protrude into the vessel to avoid build-up. For that reason, avoid using mounting bosses for flanges and screwed fittings. This applies particularly for horizontal installation and with adhesive products.

Agitators

Due to agitators, vibrations or similar, the level switch can be subjected to strong lateral forces. For this reason, do not use an overly long extension tube for LFV330, but check if you can mount a LFV200 or LFV310 level switch on the side of the vessel in horizontal position.

Extreme vibration caused by the process or the equipment, e.g. agitators or turbulence in the vessel, can cause the extension tube of LFV300 to vibrate in resonance. This leads to increased stress on the upper weld joint. Should a longer tube version be necessary, you can provide a suitable support or guy directly above the vibrating element to secure the extension tube.

$\langle x\rangle$
This measure applies particularly to applications in Ex areas. Make sure that the tube is not subjected to bending forces through this measure.

Inflowing medium

If LFV300 is mounted in the filling stream, unwanted mismeasurements may result. Mount LFV300 at a location in the vessel where no disturbing influence from e.g. filling openings, agitators, etc. can occur.

Flows

To minimise flow resistance caused by the tuning fork, LFV300 should be mounted in such a way that the surfaces of the blades are parallel to the product movement.

LFV300

Measuring accuracy

Deviation

$$
\pm 1 \mathrm{~mm}(0.04 \mathrm{in})
$$

Influence of the process temperature on the switching point

1 Shifting of the switching point in mm (in)
2 Process temperature in ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$
3 Switching point at reference conditions (notch)
4 Tuning fork

Influence of the product density on the switching point

[^1]Influence of the process pressure to the switching point

1 Shifting of the switching point in mm (in)
2 Process pressure in bar (psi)
3 Switching point at reference conditions (notch)
4 Tuning fork

Repeatability

Hysteresis
Switching delay
Frequency
0.1 mm (0.004 in)
approx. 2 mm (0.08 in) with vertical installation
approx. 500 ms (on/off)
approx. 1200 Hz

Ambient temperature - Product temperature

[^2]| Australia | Österreich |
| :---: | :---: |
| Phone +61 394974100 1800334802 - tollfree
 E-Mail sales@sick.com.au | Phone +43 (0)22 366228 8-0 |
| | E-Mail office@sick.at |
| | Polska |
| Belgium/Luxembourg Phone +32 (0)2 4665566 E-Mail info@sick.be | Phone +48 228374050 |
| | E-Mail info@sick.pl |
| | Republic of Korea |
| Brasil
 Phone +55 11 3215-4900
 E-Mail sac@sick.com.br | Phone +82-2 786 6321/4 |
| | E-Mail kang@sickkorea.net |
| | Republika Slowenija |
| Ceská Republika
 Phone +420 257911850
 E-Mail sick@sick.cz | Phone +386 (0)1-47 69990 |
| | E-Mail office@sick.si |
| | România |
| China
 Phone +852-2763 6966
 E-Mail ghk@sick.com.hk | Phone +40 356171120 |
| | E-Mail office@sick.ro |
| | Russia |
| $\begin{aligned} & \text { Danmark } \\ & \text { Phone +45 } 45826400 \\ & \text { E-Mail sick@sick.dk } \end{aligned}$ | Phone +7 4957750534 |
| | E-Mail info@sick-automation.ru |
| | Schweiz |
| Deutschland
 Phone +49 211 5301-250
 E-Mail info@sick.de | Phone +4141619 2939 |
| | E-Mail contact@sick.ch |
| | Singapore |
| España
 Phone +34 934803100
 E-Mail info@sick.es | Phone +65 67443732 |
| | E-Mail admin@sicksgp.com.sg |
| | Suomi |
| France
 Phone +33164623500
 E-Mail info@sick.fr | Phone +358-9-25 15800 |
| | E-Mail sick@sick.fi |
| | Sverige |
| Great Britain
 Phone +44 (0)1727 831121
 E-Mail info@sick.co.uk | Phone +46 101101000 |
| | E-Mail info@sick.se |
| | Taiwan |
| India
 Phone +91-22-4033 8333
 E-Mail info@sick-india.com | Phone +886 2 2375-6288 |
| | E-Mail sickgrc@ms6.hinet.net |
| | Türkiye |
| Israel
 Phone +972-4-999-0590
 E-Mail info@sick-sensors.com | Phone +90 2165877400 |
| | E-Mail info@sick.com.tr |
| | USA/Canada/México |
| Italia | Phone +1(952) 941-6780 |
| Phone +39 02274341 | $1800-325-7425$ - tollfree |
| E-Mail info@sick.it | E-Mail info@sickusa.com |
| ```Japan Phone +81 (0)3 3358 1341 E-Mail support@sick.jp``` | |
| | |
| | |
| Nederlands
 Phone +31 (0)30 2292544
 E-Mail info@sick.nl | |
| | |
| | |
| Norge
 Phone +4767815000
 E-Mail austefjord@sick.no | More representatives and agencies in all major industrial nations at www.sick.com |

[^0]: 1 Control lamp
 2 DIL switch for mode adjustment
 3 DIL switch for sensitivity adjustment

[^1]: 1 Shifting of the switching point in mm (in)
 2 Product density in $\mathrm{g} / \mathrm{cm}^{3}\left(\mathrm{lb} / \mathrm{in}^{3}\right)$
 3 Switch position $0.5 \mathrm{~g} / \mathrm{cm}^{3}\left(0.018 \mathrm{lb} / \mathrm{in}^{3}\right)$
 4 Switch position $0.7 \mathrm{~g} / \mathrm{cm}^{3}\left(0.025 \mathrm{lb} / \mathrm{in}^{3}\right)$
 5 Switching point at reference conditions (notch)
 6 Tuning fork

[^2]: 1 Product temperature
 2 Ambient temperature
 3 Temperature range with temperature adapter

