

Датчик тока LA 25-Р

Для электронного преобразования токов: постоянного, переменного, импульсного и т.д. в пропорциональный выходной ток с гальванической развязкой между первичной (силовой) и вторичной (измерительной) цепями.

Электрические параметры

I _{PN}	Номинальный входной	ток, эфф.знач.		25			Α
I _P	Диапазон преобразован	ия, эфф.знач.		0	± 55		Α
R _M	Величина нагрузочного	резистора при	$T_A =$	70°C	T _A :	= 85°C	;
			R_{Mmin}	$\mathbf{R}_{_{\mathrm{M}\mathrm{max}}}$	R _{M min}	$\mathbf{R}_{_{\mathrm{M}\mathrm{max}}}$	
	питание ± 12 В	при \pm 25 A $_{max}$	10	280	60	275	Ом
		при ± 55 A _{max}	10	80	60	75	Ом
	питание ± 15 В	при ± 25 A _{max}	50	400	135	395	Ом
		при \pm 55 A $_{max}$	50	140	135	135	Ом
I_{SN}	Номинальный аналогов	вый выходной ток		25			мА
K _N	Коэффициент преобразования			1:	1000		
v c	Напряжение питания (± 5 %)			± 12 15			В
I _c	Ток потребления			10	(@ ±15	V)+ I _s	мА
V _d	Электрическая прочност	гь изоляции, 50 Гц,	1 мин	3		Ü	κВ

Точностно-динамические характеристики

Χ	Точность преобразования						
	при \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}C$ при	± 15 B (± 5 %)	± 0.95		%		
	при ±12	15 B (± 5 %)	± 1.25		%		
$\mathbf{e}_{\scriptscriptstyle L}$	Нелинейность		< 0.15		%		
			Средн	Макс			
Io	Начальный выходной ток при $I_p = 0$	$T_{A} = 25^{\circ}C$		± 0.2	мА		
I _{OM}	Ток смещения ¹⁾ при $I_p = 0$, после перегрузки $3xI_{PN}$			± 0.3	мА		
I _{OT}	Температурный дрейф $oldsymbol{I}_{\scriptscriptstyle m O}$	0°C + 70°C	± 0.1	± 0.5	мА		
	-	25°C + 85°C	± 0.1	± 0.6	мА		
t,	Время задержки при 90 % от Ірма	nx	< 1		мкс		
di/dt	Скорость нарастания входного тог				А/мкс		
f	Частотный диапазон (-1дБ)		0200)	кГц		
Справочные данные							

T_{A}	Рабочая температура		- 25 + 85	°C
T _s	Температура хранения		- 40 + 90	°C
\mathbf{R}_{s}	Выходное сопротивление при	$T_A = 70^{\circ}C$	80	Ом
Ü		$T_A = 85^{\circ}C$	85	Ом
m	Bec		24	Г
	Стандарты		EN 50178	

Примечание: 1) Результат намагничивания магнитопровода.

$I_{PN} = 25 A$

Отличительные особенности

- Компенсационный датчик на эффекте Холла
- Изолирующий пластиковый негорючий корпус

Преимущества

- Отличная точность
- Хорошая линейность
- Очень низкий температурный дрейф
- Оптимальное время задержки
- Широкий частотный диапазон
- Высокая помехозащищенность
- Высокая перегрузочная способность.

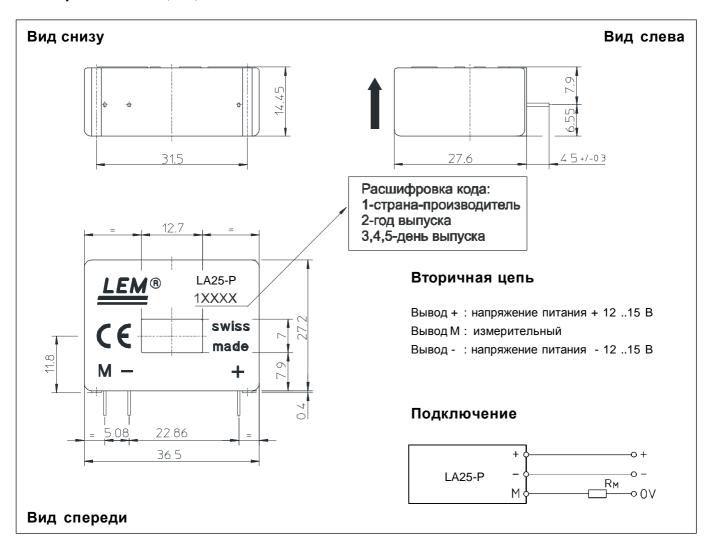
Применение

- Частотно-регулируемый привод переменного тока
- Преобразователи для привода постоянного тока
- Системы управления работой аккумуляторных батарей
- Источники бесперебойного питания
- Программируемые источники питания
- Источники питания для сварочных агрегатов.

Изготовитель -LEM S.A., Швейцария

Система менеджмента качества предприятия сертифицирована на соответствие требованиям ISO 9001 – 2000

OOO "TBEЛЕМ" LEM Components 170023,ТВЕРЬ А/Я 18


TEL/FAX: 4822/44-40-53

HTTP://www.tvelem.ru

E-mail: tvelem@lem.com

Размеры LA 25-Р (в мм)

Механические характеристики

• Общий допуск ± 0.2 мм

• Подключение первичной цепи через отверстие

12.7 х 7 мм

• Подключение вторичной цепи

3 вывода

0.63 х 0.56 мм

• Рекомендованные отверстия в плате 0.9 мм

Партия № _____

Дата отгрузки _____

Примечания

- $\mathbf{I}_{_{\mathrm{S}}}$ положителен, когда $\mathbf{I}_{_{\mathrm{P}}}$ протекает в направлении, обозначенном стрелкой на корпусе.
- Температура первичной шины не должна превышать 90°C.
- Наилучшие динамические характеристики (di/dt и время задержки) достигаются при полном заполнении неизолированной первичной шиной входного отверстия датчика.
- Для получения наилучшей магнитной связи дополнительные первичные витки следует прокладывать через верхнюю сторону датчика.
- Стандартная модель. По всем вопросам, касающимся специсполнений, обращайтесь к специалистам фирмы.