

Датчик тока LTS 6-NP

Для электронного преобразования токов: постоянного, переменного, импульсного и т.д. в пропорциональный выходной сигнал с гальванической развязкой между первичной(силовой) и вторичной(измерительной) цепями.

Электрические параметры

I _{PN}	Номинальный входной ток, эфф.значение	6	А∙вит
I _P	Диапазон преобразования	0 ± 19.2	А∙вит
V _{OUT}	Выходное напряжение, при $I_p = 0$	2.5 1)	В
	при I _Р	2.5±(0.625•	I_p/I_{pN}) B
N_s	Число вторичных витков (± 0.1 %)	2000	
R _L	Сопротивление нагрузки	≥ 2	кОм
R_{IM}^-	Встроенный измерительный резистор (± 0.5 %)	208.33	Ом
TCR	Температурный дрейф измерительного резистора	< 50	ppm/K
V _C	Напряжение питания (± 5 %)	5	В
I _C	Потребляемый ток при $I_p = 0$, $V_C = 5 \text{ V}$	23+I _S ²⁾ +(V _{OU}	_г /R _г)мА
$\check{\mathbf{V}}_{_{d}}$	Электрическая прочность изоляции, 50 Hz, 1 мин	3	кВ

Точностно-динамические характеристики

X	Точность преобразования при I_{PN} , $T_A = 25$ °C	± 0.2	2	%
\mathbf{X}_{G}	Полная точность преобразования при I_{PN} , $T_A = 25^\circ$	°C ± 0.7	7 ³⁾	%
$\mathbf{e}_{\scriptscriptstyle L}$	Нелинейность	< 0.	1	%
		Средн	Макс.	
TCV	Температурный дрейф \mathbf{V}_{OUT} при $\mathbf{I}_{\text{P}} = 0$			
	- 10°C + 85°C	80	200	ppm/K
	- 40°C 10°C		250	ppm/K
$TCe_{\scriptscriptstyleG}$	Температурный дрейф коэфф. преобразования,			
	- 40°C + 85°C		504)	ppm/K
\mathbf{V}_{OM}	Гистерезис выходного напряжения при $\mathbf{I}_{p} = 0$,			
	после прохождения тока $3 \times I_{PN}$		± 0.5	мВ
	5 x I _{PN}		± 2.0	мВ
	10 x I _{PN}		± 2.0	мВ
t _r	Время задержки при 90 % от $I_{\rm P\ max}$	< 40	00	нС

Справочные	данные

Скорость нарастания входного тока

Частотный диапазон (0 .. - 0.5 дБ)

di/dt

T _A	Рабочая температура Температура хранения	- 40 + 85 - 25 + 100	°C
's <u>m</u>	Вес	10	<u>г</u>

(- 0.5 .. 1 дБ)

<u>Примечание</u>: 1) Абсолютное значение @ $T_A = 25$ °C, 2.4750 < $V_{OUT} < 2.5250$

2) См. блок-схему на обороте

 $^{3)}\, C$ учетом встроенного измерительного резистора $R_{_{IM}}$

⁴⁾ Определяется термостабильностью измерительного резистора **TCR** $_{\rm IM}$

$I_{PN} = 2 - 3 - 6 A$

Отличительные особенности

- Многопредельный компенсационный датчик на эффекте Холла.
- Однополярное питание +5В
- Разработан для установки на печатную плату.
- Изолирующий пластиковый негорючий корпус.
- Адаптирован к применению в микропроцессорных и микроконтроллерных системах.
- Встроенный измерительный резистор
- Расширенный диапазон преобразования.

Преимущества

- Отличная точность
- Хорошая линейность
- Очень низкий температурный дрейф
- Оптимальное время задержки
- Широкий частотный диапазон
- Высокая помехозащищенность
- Высокая перегрузочная способность.

Применение

- Частотно-регулируемый привод переменного тока
- Преобразователи для привода постоянного тока
- Системы управления работой аккумуляторных батарей
- Источники бесперебойного питания
- Программируемые источники питания
- Источники питания для сварочных агрегатов.

Изготовитель -

LEM S.A., Швейцария

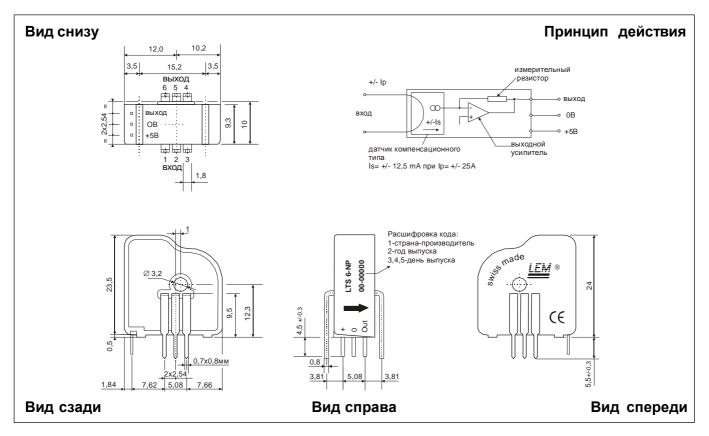
Система менеджмента качества предприятия сертифицирована на соответствие требованиям ISO 9001 – 2000

ООО "**TBEЛЕМ**" 170023,ТВЕРЬ А/Я 18 **TEL/FAX**: 4822/44-40-53 **HTTP**: //www.tvelem.ru **E-mail**: tvelem@lem.com

> 15

0..100

0..200


А/мкС

kГц

kГц

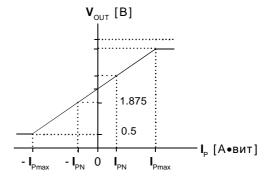
Размеры LTS 6-NP (в мм.)

Число первичных витков	Первичный входной ток, эфф.знач. І _{РN} , А	Ном. выходное напряжение V _{оит} ,В	Сопротивление первичной цепи, мОм	Индуктивность первичной цепи, мкГн	Рекомендуемая схема подключения
1	± 6	2.5 ± 0.625	0.18	0.013	6 5 4 ВЫХОД О О О О О О О О О О О О О О О О О О О
2	± 3	2.5 ± 0.600	0.81	0.05	6 5 4 ВЫХОД О———————————————————————————————————
3	± 2	2.5 ± 0.600	1.62	0.12	6 5 4 ВЫХОД О О О ВХОД 1 2 3

Механические характеристики

• Общий допуск ± 0.2 мм

• Подключение первичной цепи 6 выводов 0.7 x 0.8 мм Рекомендованные отверстия в плате 1.3 мм


• Подключение вторичной цепи 3 вывода 0.5 x 0.35 мм Рекомендованные отверстия в плате 0.8 мм

• Отверстие для первичной шины
Ø 3.2 мм

Примечание

- **ВНИМАНИЕ!** Необходимо сторогое соблюдение мер по защите от статического электричества при хранении и монтаже согласно ОСТ 11.073.062-84
- Выходное напряжение увеличивается, когда ток протекает от выводов 1,2,3 к выводам 4,5,6

Первичный ток - Выходное напряжение

Партия № ______ Дата отгрузки_____